

Economic Evaluation of the Diamer-Basha Dam: Analysis with an Integrated Economic/Water Simulation Model of Pakistan

Sherman Robinson and Arthur Gueneau International Food Policy Research Institute (IFPRI) September 2014

Motivation

- Climate change is now visible and affects economic decisions, such as investment in infrastructure projects
 - Foolish to plan major infrastructure investment assuming climate stability—New IPCC report
- Long run perspective: economic drivers and population are also changing rapidly
 - Need to consider economywide links, national and global
- How do we integrate our knowledge across sectors to reflect potential interactions?
 - Important role for simulation models

Simulation Models

- Need for integrated simulation modeling and scenario analysis for consistent projections
 - Water and agriculture are tightly linked
 - How to link water and economy models?
- Two modeling frameworks, one philosophy:
 - Economics: agricultural partial equilibrium models (global, regional) and CGE models (national)
 - Water system: hydrology, water basin management, water allocation and stress

CGE/W Model Framework

- CGE-W is a water/economic simulation model
 - Water policies influence distribution of water
 - Repercussions on crop yields and supply
 - Hydropower production
 - Economy reacts by reallocating production factors through market mechanisms, direct and indirect
- Economic policies affect water system
 - Growth, demand, international trade, prices
 - Much economic activity is linked to water, directly and/or indirectly

Coupled Economic/Water Models

- There are economic models with water factors
 - Do not capture the complexity of the river basins
 - Highly simplified treatment of water in production
- There are water models with economic variables
 - Do not capture economywide links between agriculture and the rest of the economy: "partial equilibrium"
 - Highly simplified treatment of economic forces
- Our paradigm: Let each model do what it does best and make them talk to each other
 - Achieve "consistency" by linking the models

The CGE/W Model System

Computable General Equilibrium (CGE) Models

- A standard tool of economic and policy analysis for the past 40 years
- Simulates operation of a market economy with supply/demand equilibrium determining prices
- IFPRI Standard CGE model (Lofgren and Robinson)

Stylized CGE Model Structure

The CGE-W Country Model

- CGE-W simulates the entire national economy

 Includes agriculture/non-agriculture links
- Includes regional disaggregation and links to detailed water system simulation models

River basin management and yield stress models

 CGE-W models: Pakistan (Indus), Egypt (Nile), and Ghana (Volta)

IFPRI Pakistan CGE Model

- Based on the 2007-2008 SAM of Pakistan (Dorosh et al., 2012).
 - 63 activities and 48 commodities
 - Special focus on agriculture (15 agric commodities)
 - Large, medium, and small farms
- Distinguishes 19 types of households and 10 types of labor
- Distinguishes Punjab, Sindh, and other provinces for agricultural sector

Water Demand Module

- Computes agricultural cropped area based on the CGE model results
- The water demand is then computed using FAO guidelines
- Industrial and Livestock water demand are proportional to the amount of activity in the sector
- Domestic water demand is proportional to household revenues

The Indus Basin Water Model

Source: Hasan, 2005.

The Indus Basin Model Revised

- Models the main canals in the basin, along with water demand and storage.
- Has a rule-based optimization system.
- Can implement multiple policy options:
 - New dams
 - New way of sharing/allocating water
 - New or more efficient crops

IBMR Model

- The original model was built by the World Bank in 1989. It is still used today.
- It maximizes producer and consumer surplus, and has a variable cropped area.
- The goal was to see how different policy options would affect total agricultural output.
- It has been refined over time and the data have been constantly updated
- However, it neglects the broader economic picture of the country

CGE-W version of IBMR: RWSM

- Standalone water model: Regional Water System Model (RWSM)
 - Hydrology similar to IBMR
 - Added hydropower module
- RWSM does not have any internal representation of the economy
 - Links to CGE model for economic variables
- Objective is to minimize water shortages across
 Pakistan: optimizing model like IBMR

RWSM-Pak Overview

- Represents the 45 main canals, as well as the link canals between rivers
- Takes into account fresh and saline groundwater, as well as public and private tubewell pumping
- Can represent droughts and floods
- Includes 16 representative crops
- Takes into account industrial, domestic and livestock water demand (assumed to be drawn from groundwater mostly)

Water Demand Module

- Computes water demand based on the CGE model results
 - Cropped area is based on the demand for land factor from agricultural activities
 - Agricultural water demand is then calculated using the water demand per acre cropped
- Industrial and Livestock water demand are proportional to the amount of activity in the sector and domestic water demand is proportional to household expenditures
 - These demands are broken down by region, proportionally to their population

Water Allocation and Stress Model

- In case of water stress, the yield of crops is reduced using the FAO Ky approach (Doorenbos and Kassam, "Yield Response to Water",1979)
- We separate the stress during the four main growing stages of the crops and use a multiplicative approach to get the final value
- The allocation objective is to maximize the value of production in each of the water model areas, while minimizing risks for the farmers

CGE/W: Modular System

Illustrative Results for Pakistan

- We look at the 2005-2050 period
- Our interest is to see whether the proposed Diamer-Basha dam in the upstream Indus is a good investment to adapt to natural flow variability and climate change
- We simulate impacts on irrigated yields and on the hydroelectricity production

GDP fluctuations from base with historic inflows

GDP fluctuations from base with historic inflows

GDP fluctuations from base with Basha

GDP fluctuations from base with historic inflows and Basha

Agricultural Production change adding variability and/or Basha dam

Punjab agricultural production fluctuations from base with historic inflows and Basha

Diamer-Basha in Simple Metrics

	Benefit-Cost Ratio	IRR
Base	2.4	9.3%
Historic Variability	2.7	10.1%
MIROC A1B	3.5	11.0%
MIROC B1	3.0	10.6%
CSIRO A1B	3.3	10.8%
CSIRO B1	2.9	10.4%

Conclusion

- Need for simulation models and scenario analysis at global, regional, and national levels
- Hard-linking economic and water models includes interactions between the food and water systems under global change
 - Philosophy of linking different models is important, capitalizing on strengths of separate model systems
 - Advances in methodologies of model communication facilitate this approach